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List of Abbreviations

Abbreviation Meaning
ADE Average Displacement Error
API Application Programming Interface, the public interface provided by

a library for use by software developers
ARENA 2036 A large research campus in form of a modern factory hall in Stuttgart-

Vaihingen, Germany. Provides an innovation platform for mobility &
production of the future and hosts DARKO project demonstrations.

ATC Large dataset of human motion trajectories, recorded by Brscic et al.
in 2013

CLiFF-Map Circular Linear Flow Field map, a specific type of Maps of Dynamics
CNN Convolutional Neural Network
CVM Constant Velocity Model, a popular short-term prediction baseline
FDE Final Displacement Error
GPU Graphics Processing Unit, used as a deep learning accelerator to train

and run inference on neural networks
GRU Gated Recurrent Unit, a gating mechanism in RNNs
HRI Human-Robot Interaction

ILIAD EU Horizon 2020 project (2016–2020) which deployed a heteroge-
neous fleet of mobile service robots in intralogistics environments.

LHMP Long-term Human Motion Prediction
LiDAR Light Detection And Ranging, a time-of-flight-based sensor that pro-

duces point clouds. Also spelled “lidar”.
MoD Map of Dynamics
MPC Model Predictive Control, a popular collision avoidance technique

where predictions of human motion and robot controls can be inte-
grated as costs over a short outlook horizon

NLL Negative Log-Likelihood
NN Neural Network

ORU Örebro University, member of the DARKO consortium
RGB(-D) Red, Green, Blue(, Depth)

RNN Recurrent Neural network
ROS Robot Operating System, see www.ros.org
SDK Software Development Kit

SLAM Simultaneous Localization and Mapping
SPENCER EU FP7 project (2013–2016) which deployed a mildly humanized ser-

vice robot in a busy airport terminal at Amsterdam Schiphol Airport.
SVM Support Vector Machine, a machine learning classifier

THÖR A context-rich dataset of human and robot motion trajectories,
recorded by some of the DARKO consortium members in 2019 as
part of the ILIAD project

THÖR-MAGNI A large-scale extension to the THÖR dataset, recorded as part of the
DARKO project

TUM Technical University of Munich, member of the DARKO consortium
WP Work package in DARKO

YOLO A series of 2D object detectors developed by J. Redmon
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1 Introduction

The deliverable reports on the system for prediction of human motion and intents developed
in the EU H2020 task T5.1, including its scientific results and an initial software prototype
that will be providing input to other components in DARKO (e.g. motion planning and
control in WP6).

Project partners, contributing to this deliverable, are: Robert Bosch GmbH (BOSCH,
lead responsible), Örebro University (ORU), and Technical University of Munich (TUM).

1.1 Motivation

We advocate for the notion that the success of intralogistics robots is deeply intertwined
with their collaboration with human labor. The objective should not be to erect entirely
new, fully automated warehouses; rather, businesses of varying scales should aim for
intelligent automation systems. These systems should not only integrate smoothly into
existing warehouse operations but also facilitate effective and safe cooperation between
robots and human workers. Therefore, the DARKO project sets an important objective of
“Predictive Safety and Efficiency in Human-Robot Coordination” (O2), which builds on the
methods developed in WP5.

1.2 Key achievements

During the work on Task 5.1 of WP5, the consortium has reached several milestones that
significantly advance the field of human-robot interaction and autonomous navigation.

We begin with several simple and robust baseline methods for trajectory prediction,
introduced in our novel Atlas benchmark for human motion prediction methods. This
component establishes the foundation for evaluation and benchmarking, adopted in the
remainder of the project. Upon these baselines, we proceed to develop prediction methods
capable of increasingly more involved understanding of human motion and its context.
This work was presented at the 2022 IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN) [1].

Considering the spatious and topologically complex intralogistic and manufacturing
environments where the DARKO platform is expected to operate, we addressed the Long-
term Human Motion Prediction using Maps of Dynamics (MoD-LHMP). Our method, which
uses the specific CLiFF-Map of human motion fynamics as input from WP3, is capable
of accurate, multimodal environment-aware forecasts in a very long-term perspective
(CLiFF-LHMP). This work was presented at the 5th Workshop on Long-term Human Motion
Prediction1 as part of the 2023 International Conference on Robotics and Automation
(ICRA) [2] and disseminated at the 2023 International Conference on Intelligent Robots
and Systems (IROS) [3].

We further improved MoD-LHMP with better decomposition of uncertainty in the
training data into laminar (regular) flows and turbulent (outlier) flows. To allow more
accurate prediction in realistic manufacturing environments, shared by diverse agents
(workers, forklifts, other robots), we extend the MoD-LHMP method with class or activity
token of the moving agent. We also propose to use time-conditioned Maps of Dynamics to
achieve more accurate predictions in presence of timed everts during the day, such as the
morning and evening rish hours, delivery and lunch schedules, etc. This line of research
was disseminated at the 2024 International Conference on Robotics and Automation
(ICRA) [4], 4th Workshop on Visual Perception for Navigation in Human Environments2

1https://motionpredictionicra2023.github.io/
2https://jrdb.erc.monash.edu/workshops/iccv2023
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forum for European research projects and industry stakeholders concerned with robots for logistics applications. This
topic group regularly arranges workshops at the ERF, through which we will communicate with European stakeholders
in industry and academia; mainly target audience (1) and (3) above. (iv) Press. Print media as well as TV and radio
will be targeted actively through press releases of the partner’s external relations offices, coordinated by ORU.

International workshops for industry stakeholders and academia will be arranged at least once per year. As also
described in Sec. 2.2.1, specific stakeholder meetings with key invited end users and technology providers will be
arranged at the milestone demonstrations, and our presence at Arena2036 will give many opportunities for communi-
cation outreach also at other points in time.

The success of the communication plan will be constantly monitored (community feedback, website hits, media
coverage) and adjusted to the needs of the different audiences.

3 Implementation

3.1 Work Plan

WP4: Dynamic Manipulation

WP1: Platform

WP5: HRSI WP6: Motion Planning

WP7: Risks & Scheduling

WP2: Perception

WP3: Mapping & Localization

Figure 6: Work package dependencies. Black arrows denote data flow during operation, dashed red arrows indicate
constraints and orchestration, and dashed grey arrows indicate hardware dependencies. The blue boxes are primarily
related to mobile manipulation and throwing. The yellow boxes are primarily related to navigation and deployment of
a mobile robot in shared environments. The green box (Perception) provides input to both blue and yellow. The red
box (Risks) ensure overall risk and safety management.

The DARKO workplan is designed to meet the five objectives outlined in Sec. 1.1. We have divided the work into
ten Work Packages, seven of which contain core technical development. Fig. 6 illustrates how these technical work
packages are related to the objectives, and how the work packages relate to each other. In addition, one work package
ensures that the scope, requirements, and methods of evaluation are adequate; one focuses on maximising scientific
and industrial uptake; and one on administrative and technical management.

WP1 (Efficient Mobile Dynamic Manipulation Platform) will provide as its main outcome a novel intrinsically
safe elastic manipulator and a general-purpose gripper, enabling energy-efficient, safe and precise mobile manipula-
tion and throwing. WP2 (3D Perception and Scene Understanding) extracts information from the sensor data on the
DARKO robot platform and provides semantic and geometric understanding of the objects and people working with
the robot. WP3 (Multimodal Mapping and Safe Localization) aims to deliver a multi-modal mapping system that can
learn both geometry and explicit dynamics characteristics, incorporate heterogeneous map sources, and introspect to
reason about its performance. WP4 (Efficient and Safe Dynamic Manipulation) provides the control and planning
strategies for safe and efficient dynamic manipulation; including moving objects, and throwing. WP5 (Human-Robot
Spatial Interaction) focuses on human-robot co-production by implementing new solutions for long-term human mo-
tion prediction, intention communication, and novel representations and causal inference methods for human-robot
spatial interaction. WP6 (Predictive and Safe Motion Planning) delivers safe and human-aware motion planning and
control for the mobile base. WP7 (Risk Representation and Operations Scheduling) establishes a multidimensional
risk representation, taking into account risks in terms of hardware, perception software, task fulfilment, and human
safety; and provides objective constraints to minimise risk for the operational components delivered by the above work
packages. WP8 (Requirements and Evaluation) is dedicated to eliciting requirements, developing a project-wide sys-
tem architecture, and evaluating the results. Finally, WP9 (Management) and WP10 (Dissemination and Exploitation)
support the realisation of DARKO’s ambitious work program. The latter in particular explicitly includes efforts to

DARKO Part B: page 24 of 89

Figure 1: Relation of WP5, which this deliverable reports on, to other work packages in DARKO.
Black arrows denote data flow during operation, dashed red arrows indicate constraints and
orchestration, and dashed grey arrows indicate hardware dependencies.

as part of the 2023 International Conference on Computer Vision (ICCV) [5], and in the
Robotics and Automation Letters (RA-L) journal [6].

We also propose to use full-body poses for more accurate trajectory prediction. Jointly
with WP2 T2.5, we propose a joint non-autoregressive transformer method with novel
motion transformation technique that allows training directly in 3D coordinates. In
addition to the full-body as an important descriptor of human motion, we also investigate
significance that gaze plays during navigation. We discover the relation between the head
orientation and gaze direction to allow more informed gaze estimation from the robot’s
on-board sensors. This work was presented at the 2024 IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN) [7].

Development of these advanced trajectory prediction methods would not have been
possible relying solely on the prior art datasets, often limited in the context of motion
and interaction. To this end, a major milestone of our work in WP5 was recording the
THÖR-MAGNI dataset with diverse contextual cues, numerous participants and several
elaborate scenarios. This work was presented at the Workshop Towards Socially Intelligent
Robots In Real World Applications3 (SIRRW 2022) as part of the 2022 IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN) [8], and in the
International Journal of Robotics Research (IJRR) [9].

1.3 Relation to other work packages

Figure 1 illustrates the relation of work package WP5, which this deliverable reports on, to
the other technical work packages in DARKO. WP5 receives input from WP2 (Perception)
in the form of human positions, velocities and full-body poses, and from WP3 (Mapping
and localization) the map of human dynamics. WP5 provides its output to WP6 (Motion
planning).

At the technical level, all inter-component communication in DARKO happens via the
Robot Operating System (ROS). More details on the communication between different
DARKO components at a task level, including the used ROS message types, can be found
in the system architecture deliverable D8.2.

3https://sirrw-2022.github.io/proceedings/
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Figure 2: DARKO prediction system architecture, developed in T5.1. Black arrows show the
data flow through the prediction modules. Dashed arrows indicate possible or planned output
of predictions to the WP2 and WP6 components.

1.4 Repositories

The software developed is hosted in a Gitlab version control system managed by the project
coordinator.

Main repositories currently available are:

• The Atlas Benchmark in https://github.com/boschresearch/the-atlas-benchmark.
This software is developed by BOSCH members.

• CLiFF-LHMP in https://github.com/test-bai-cpu/CLiFF-LHMP and LaCE-LHMP in
https://github.com/test-bai-cpu/LaCE-LHMP. This software is developed by ORU
members.

• THÖR-MAGNI Dataset in https://zenodo.org/records/10407223. This software is
mainly developed by ORU and TUM members.

• THÖR-MAGNI Human Motion Data Processing and Visualization Tools in https:
//github.com/tmralmeida/thor-magni-tools. This software is mainly developed by
ORU and TUM members.

Other software packages developed by BOSCH members are not yet disclosed to the public.

2 DARKO prediction system architecture

The human motion prediction system on the DARKO robot, developed in WP5 T5.1, hosts
an array of methods with increasing levels of context-awareness and high-level cues of
human behavior. This system is designed to provide the required levels of prediction
accuracy and operation speed, requested by the many downstream components. A more
detailed description of the software architecture is provided in the system architecture
deliverable D8.2, and its summary is given in Fig. 2.

Below are listed the main components, described in details in the following sections:

• On the most basic level, we deploy fast physics-based methods [11] that can be
used by the robot controller in WP6 for fast reaction and collision avoidance. These
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methods can also be used to improve the temporal association for people tracking in
WP2. These methods are evaluated in Sec. 3.3.

• For the more far-reaching outlook, we deploy long-term trajectory prediction meth-
ods which are multi-modal and environment-aware [2, 3, 4]. Our solution is based
on the patterns of human dynamics from WP3 (Maps of Dynamics). In topologically
complex large indoor spaces with multiple robots or stationary sensors, these predic-
tions can be used by the global path planner in WP6 to re-route the DARKO robot
on the path of least disturbance. These methods are described in Sec. 5.

• To move beyond the geometric representation of a moving person as a point on
the top-down view plane, as commonly used by the prior art collision avoidance
methods, we use the 3D full-body poses from WP2 as input to trajectory prediction
to significantly improve trajectory prediction and enable pose prediction in global
coordinates [10]. This can in turn improve full-body pose tracking accuracy in WP2
in the events of sensor noise, partial or full occlusions. Furthermore, in WP6 we
developed a context-aware MPC-based collision avoidance method which includes
static poses and predictions. In the next iterations, this method will be extended
with full-body pose predictions. More details are presented in Sec. 6.

• We also use head orientation and gaze direction of a walking person to describe
the movement intention [7]. Head orientation is coming from the WP2 perception
system, whereas gaze direction prototype is achieved in WP5 using eye-tracking
glasses. In a preliminary study, we investigate if the on-board estimation of head
orientation can serve as a reasonable proxy for gaze tracking using a dedicated device,
and quantify the expected accuracy of this assumption. This study is presented in
Sec. 7.
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3 The Atlas Benchmark: an Automated Evaluation Framework for
Human Motion Prediction

Summary: Human motion trajectory prediction, an essential task for autonomous sys-
tems in many domains, has been on the rise in recent years. With a multitude of new
methods proposed by different communities, the lack of standardized benchmarks and
objective comparisons is increasingly becoming a major limitation to assess progress and
guide further research. Existing benchmarks are limited in their scope and flexibility to
conduct relevant experiments and to account for contextual cues of agents and environ-
ments. To overcome this limitation and set up appropriate benchmarking pipeline, early
in the scope of the DARKO project we developed Atlas, a new benchmark to systematically
evaluate human motion trajectory prediction algorithms in a unified framework. Atlas
offers data preprocessing functions, hyperparameter optimization, comes with popular
datasets and has the flexibility to setup and conduct underexplored yet relevant experi-
ments to analyze a method’s accuracy and robustness. In order to set up a fast and basic
short-term trajectory prediction baseline for the DARKO robot, we compare five popular
model- and learning-based predictors. Our findings indicate that, when properly applied,
early physics-based approaches are still remarkably competitive. Such results confirm the
necessity of benchmarks like Atlas.

3.1 Introduction

Benchmarking motion prediction algorithms is a challenging task. The evaluation out-
come can be affected by various factors such as data, parameters, hyperparameters and
experiment design. Elaborate and carefully designed experiments are necessary to expose
specific abilities or limitations of a method, in particular for complex learning approaches.
Influencing factors are, for example, the observation period, i.e. the duration that agents
need to be seen to allow for accurate prediction of their motion, or the exact procedure
how to set up a testing scenario from sequences of raw person detections. Even when
evaluating a simple constant velocity motion model with the same dataset, metrics and
prediction horizon, the evaluation results may still vary as reported in [12] and [13] due
to differences in testing scenario generation and data pre-processing. The limitations of
the protocols commonly used to evaluate new prediction methods have been pointed out
by several authors [14, 13, 11].

In this section we describe the Atlas benchmark as a first step towards automated
benchmarking of motion prediction methods in a unified framework with systematic
variation of key prediction parameters. Atlas includes heterogeneous datasets of human
motion trajectories, is capable of automatically extracting testing scenarios, and can deal
with varying, missing and noisy agent detections using data interpolation, downsampling
and smoothing. Compared to prior art such as TrajNet++ [15], it offers several tunable
parameters like the observation period and prediction horizon, is able to import semantic
maps and other relevant information such as goal positions in the map, allows to evaluate
probabilistic prediction results and to conduct robustness experiments with simulated
perception noise. Due to those features, our benchmark works with both short- and
long-term predictors. Unlike TrajNet++, it is especially suited for studying how prediction
parameters influence the results, in contrast to fixing the main parameters to produce the
ranking scores in a specific challenge. Furthermore, our benchmark has a direct interface
to the hyperparameter estimation framework SMAC3 [16] to calibrate a predictor on a
specific dataset. This feature is particularly useful for model-based predictors, which, as we
will show in the experiments, can perform still very well compared to recent learning-based
ones.

8
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Figure 3: Atlas benchmark overview: (1) Supported import of new datasets (labeled detection
streams), (2) Support for contextual cues in the environment, (3) Automated calibration
of prediction hyperparameters, (4) Automated parametrized scenario extraction, (5) Direct
interface to the prediction methods.

We showcase Atlas by evaluating several popular model- and learning-based methods
[17, 18, 19, 20] in terms of their prediction accuracy, ability to predict in new environments,
and their robustness to perception noise and limited observations.

3.2 Background

A trajectory prediction method aims to estimate a probability distribution over future
positions of a moving agent within a certain time horizon. Typically, a motion predictor
uses as input the agent’s current or past motion states, possibly augmented by the current
or past states of the environment. The environment is represented by the states of other
moving agents, a topometric map of static obstacles, and possibly semantic information
associated to parts, locations or objects of the map.

For the evaluation of a motion predictor we consider the following elements: datasets
(popular examples include [21, 22, 23, 24, 25, 26]), the testing scenario extraction strategy
and the evaluation metrics. As testing scenario extraction we denote the conversion of the
continuous flow of (agent) detections, where past detections between consecutive frames
form the observation history of length Os ∈ R+ seconds (or Op ∈ Z+ positions), and future
agent states within horizon Ts ∈ R+ seconds (equivalent to Tp ∈ Z+ positions) form the
predictions to be compared to the ground truth (GT). The metrics used to this end include
geometric and probabilistic distance estimates between predicted and GT positions [11].

Based on these insights, the Atlas benchmark comes with an automated procedure to
extract testing scenarios from datasets with flexible Op and Tp parameters. Atlas accepts
occupancy and semantic maps as input, supports various forms of parametric and non-
parametric uncertainty representation, and includes robustness experiments with added
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noise to the observed trajectories.

3.3 Atlas design and experiments

Atlas includes five main elements: data import, preprocessing, the actual prediction phase,
evaluation and visualization, see Fig. 3. This design allows to interface and parametrize
different prediction algorithms for a flexible and highly automated evaluation and analysis.

As first step, the datasets and, if available, information on the environment such as
goals, obstacles, and semantics are imported into the benchmark. Next, the raw data is
preprocessed with downsampling to a user-defined frequency, misdetection interpolation
and trajectory smoothing. Once the dataset is ready, we extract the testing scenarios
with the user-specified observation and prediction lengths, and the minimum number of
observed people. The observed past trajectories of all people in the testing scenario, along
with environment data, are explicitly interfaced as input to the prediction algorithm. The
returned predictions are evaluated against the ground truth using several metrics. Finally,
the prediction results can be visualized with plots or animations. Meta-parameters to
control the data processing and benchmark setup are stored in separate yaml files, and
the benchmark is accessed via Jupyter notebooks.

Building on the datasets, pre-processing steps and metrics described above, the bench-
mark enables researchers to set up and conduct several experiments to study prediction
performance under varying conditions. Such experiments are not only key for researchers
to better understand the algorithm or model at hand, e.g. during ablation studies, but also
for practitioners to evaluate a predictor within a system with adjacent up- and downstream
tasks and real-world deployments.

3.3.1 Prediction accuracy conditioned on parameters

Os and Ts are among the main factors, associated with predicting motion. The accuracy
naturally degrades for further time instances, while longer observations may improve
it overall. In Atlas it is possible to measure the accuracy of prediction conditioned on
these two main parameters. Further accuracy breakdown is possible by conditioning the
measured values on the number of people in the scenario.

3.3.2 Transfer experiments

A crucial part of evaluating a prediction method is to analyze its generalization ability to
new environments not included in the training data. Such experiments are most often
overlooked in related work. In Atlas it is possible to script hyperparameter optimization
in one dataset, and evaluate the method in another. In the future we plan to extend this
functionality for training models.

3.3.3 Robustness experiments

For a system to work in the real world, a predictor must be robust against imperfection
in perception such as noisy agent position observations. One possible way to quantify
robustness, implemented in Atlas, is by measuring accuracy on the testing scenarios, after
artificially adding increasing amounts of white Gaussian noise.

3.4 Evaluation of fast short-term prediction methods

With the Atlas benchmark described above, we now demonstrate its usage in an example
evaluation. To this end, we conducted experiments to study and compare the performance

10
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Prediction horizon
Method 1.6 s 3.2 s 4.8 s 8 s

A
D

E

CVM 0.155± .04 0.319± .09 0.499± .15 0.870± .30
Sof 0.156± .05 0.318± .09 0.494± .15 0.870± .30

Kara 0.164± .05 0.324± .09 0.508± .15 0.872± .31
SGAN 0.240± .08 0.500± .15 0.785± .24 –
T++ 0.152± .04 0.340± .09 0.549± .16 1.006± .29

FD
E

CVM 0.272± .08 0.621± .19 1.000± .33 1.845± .71
Sof 0.272± .08 0.620± .19 1.008± .33 1.846± .71

Kara 0.279± .08 0.623± .19 1.000± .33 1.845± .71
SGAN 0.418± .13 0.977± .31 1.592± .51 –
T++ 0.273± .08 0.689± .20 1.149± .35 2.187± .70

Table 1: ADE in the ATC dataset varying the prediction horizons

Prediction horizon
Method 1.6 s 3.2 s 4.8 s 8 s

A
D

E

CVM 0.20± 0.09 0.50± 0.22 0.87± 0.39 1.80± 0.73
Sof 0.29± 0.13 0.54± 0.22 0.82± 0.34 1.42± 0.52

Kara 0.32± 0.14 0.57± 0.23 0.85± 0.35 1.44± 0.54
SGAN 0.29± 0.11 0.65± 0.22 1.08± 0.36 –
T++ 0.18± 0.07 0.47± 0.18 0.84± 0.33 1.68± 0.62

FD
E

CVM 0.38± 0.17 1.07± 0.48 1.95± 0.86 4.10± 1.51
Sof 0.46± 0.20 1.02± 0.44 1.66± 0.74 2.95± 1.08

Kara 0.49± 0.21 1.05± 0.45 1.69± 0.75 2.96± 1.08
SGAN 0.52± 0.19 1.36± 0.47 2.33± 0.27 –
T++ 0.34± 0.14 1.04± 0.42 1.91± 0.75 3.79± 1.28

Table 2: ADE in the THÖR3 dataset varying the prediction horizon

of a small range of popular methods for human motion prediction, from simple physics-
based baselines [17, 18, 27] to state-of-the-art deep learning methods [19, 20]. More
details on the methods are available in [28].

These methods are evaluated on the ETH [29], ATC [24] and THÖR [26] datasets,
the latter recorded by the DARKO consortium members in the pevious EU H2020 project
ILIAD (2017-2021), and extended as THÖR-MAGNI in the course of DARKO (see Sec. 4).

We present the results in Tables 1–3, Fig. 4–8 and show example predictions in Fig. 9–
12. Tables 1 and 2 show the results of evaluating the ADE and FDE on different prediction
horizons with the fixed observation period Os = 3.2 s. In the ATC dataset, which contains
mostly straight linear motion, even in crowded scenes, the force-based approaches perform
on the level of constant velocity. Trajectron++ and SGAN, on the other hand, attempt to
predict more variety in motion than what exists in real life, leading to higher displacement
errors (see an example scenario in Fig. 10).

In the THÖR3 dataset (Table 2 and Fig. 12), on the contrary, people navigate in a tighter
environment across multiple directions, increasing the importance of good interaction
modeling. Here Trajectron++ outperforms the CVM, however the best and most stable
results are reached by the force-based methods.

In the experiments with different observation horizons we found all methods to perform
very robustly even with observation lengths as short as 1.2 s, see Fig. 4 and 5. The ADE/FDE
results for increasing amounts of noise in the agent positions added to the ETH and THÖR3
data are shown in Fig. 6 and 7. The performance of all methods, including Trajectron++,
degrades considerably when the observations become more unreliable (with σ ≥ 0.2)
where SGAN shows an almost linear degradation to the amount of noise, as compared to
exponential decrease of other methods. Again, the model-based methods outperform the
learning-based ones.

Table 3 summarizes the transfer experiment, where the methods are calibrated on one
dataset and tested on another. We observe that the predictive social force approach (Kara)
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Figure 4: ADE/FDE in the ATC dataset with different observation lengths

Figure 5: ADE/FDE in the THÖR1 dataset with different observation lengths

delivers more stable transfer performance in all cases as compared to the Sof method.
An overall conclusion from the experiments, supported by the qualitative analysis in

Fig. 9–12, is that the model-based prediction methods, properly calibrated, with velocity
filtering and goal projection, offer a surprisingly competitive alternative to the complex
state-of-the-art deep learning approaches. This result seems to confirm the recent findings
by Schöller et al. [13], once again indicating that learning interactions is an extremely
challenging task prone to evaluation pitfalls. That, and the considerable runtime differences
in favor of the model-based approaches in Fig. 8, justifies the need for further research into
interaction models, both engineered and learned ones. Another conclusion is that, in our
experiments, the predictive social force model does not reliably outperform the original
method. Finally, the results of the force-based methods calibrated on simpler datasets with
a lot of linear motion (such as the ETH and ATC) converge to the CVM model up to the
3rd decimal digit (i.e. less than 1 cm difference).
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Dataset ETH ATC THÖR1 THÖR3

ETH

CVM: 0.283± .12
Sof: 0.277± .11

Kara: 0.278± .12
SGAN: 0.787± .42
T++: 0.399± .36

0.499± .15
0.494± .15
0.498± .15
0.785± .24
0.549± .16

0.69± .39
0.58± .32
0.62± .33
0.94± .39
0.66± .30

0.87± .39
0.80± .34
0.81± .38
1.08± .36
0.84± .33

ATC
Sof: 0.29± .13

Kara: 0.34± .15
0.497± .15
0.501± .16

0.67± .37
0.58± .31

0.85± .38
0.81± .36

THÖR1
Sof: 0.31± .14

Kara: 0.28± .11
0.491± .15
0.493± .15

0.57± .30
0.58± .32

0.76± .34
0.81± .34

THÖR3
Sof: 0.29± .12
Kara: .28± .11

0.50± .15
0.49± .15

0.60± .32
0.61± .33

0.82± .34
0.85± .35

Table 3: ADE in the transfer experiments on different datasets

Figure 6: ADE/FDE in the ETH dataset with added noise

Figure 7: ADE/FDE in the THÖR3 dataset with added noise

Figure 8: Average runtimes to compute predictions for Os = 3.2 s and Ts = 4.8 s in the scenes
from the ATC dataset, sorted by the number of people. Left: model-based methods and SGAN,
right: Trajectron++. Despite achieving roughly comparable performance, the model-based
methods are two orders of magnitude faster than the Trajectron++. SGAN has constant runtime
performance. The irregular shape of the Trajectron++ performance curve is explained by
the number of and the irregularities in the scenarios: due to the pooling and pruning when
computing interactions, a scene with 10 people far away from each other might be easier to
solve than with 6 people closely interacting.
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Figure 9: Predictions in the ETH scenario

Figure 10: Predictions in the ATC scenario

Figure 11: Predictions in the THÖR1 scenario

Figure 12: Predictions in the THÖR3 scenario
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4 THÖR-MAGNI: A Large-scale Indoor Motion Capture Recording of
Human Movement and Robot Interaction

Summary: We present a new large dataset of indoor human and robot navigation
and interaction, called THÖR-MAGNI, that is designed to facilitate research on social
human navigation: e.g., modeling and predicting human motion, analyzing goal-oriented
interactions between humans and robots, and investigating visual attention in a social
interaction context. Unlike existing datasets, THÖR-MAGNI includes a broader set of
contextual features and offers multiple scenario variations to facilitate factor isolation.
The dataset includes many social human-human and human-robot interaction scenarios,
rich context annotations, and multi-modal data, such as walking trajectories, gaze tracking
data, and lidar and camera streams recorded from a mobile robot.

4.1 Introduction

Modern approaches for modeling human motion require plentiful data recorded in diverse
environments and settings to train on, as well as for the evaluation [11]. Among the
growing numbers of human trajectory datasets, most focus on capturing interactions
between the moving agents in indoor [24], outdoor [25], and automated driving [30]
settings. These datasets are designed to study how people interact and avoid collisions
in social settings by describing their motion through position and velocity information.
Further datasets attempt to capture full-body motion in various activities and human-object
interactions in household settings [31, 32, 33].

Human motion is influenced by many exogenous factors, which cumulatively amount to
the context in which people move and interact. Among those are numerous environmental
factors: motion and activities of other people and robots, locations of obstacles, semantic
attributes such as points of common interest, direction signs, and special zones. Motion
datasets should not only capture these factors to enable computational analysis of how
people navigate but also vary them systematically to support factor isolation in various
conditions. Datasets with access to rich context can help to better explain, model, and
predict human motion.

Furthermore, beyond the environment context, there are various aspects of the specific
person — target agent cues [11]— which are helpful in better understanding their intention,
ongoing activity, attention, and distraction, preferences, and abilities. These cues include
head orientations, full body positions, gaze directions, social grouping, and past activity
patterns. Multi-modal approaches for human motion modeling and prediction can provide
more accurate results by combining these cues [5], and their development is subject to
the availability of high-quality multi-modal data.

Existing datasets in human motion analysis often lack the comprehensive inclusion of
the exogenous factors and the target agent cues necessary for holistic studies of human
motion dynamics. This research gap hinders the development of robust models that cap-
ture the relationship between contextual cues and human behavior in different scenarios.
To address this gap, we present a novel dataset incorporating a broader set of contex-
tual features and multiple variations to support factor isolation. By integrating diverse
modalities such as walking trajectories, eye tracking data, and environmental sensory
inputs captured by a mobile robot (see Figure 13), our dataset fosters the exploration
and analysis of human motion in various scenarios with increased fidelity and granularity.
In this paper, we propose a novel dataset of accurate human and robot navigation and
interaction in diverse indoor contexts, building on the previous THÖR dataset [26].

The THÖR dataset, recorded in our previous H202 EU project ILIAD, pioneered weakly-
scripted scenario-based data collection with motion capture in a controlled environment,
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Figure 13: THÖR-MAGNI data modalities. (1) motion capture trajectories of participants
in a workplace setting shared with other humans and robots; (2) lidar sweep recorded with
the DARKO robot; (3) snapshot from an eye tracker’s gaze overlay video; (4) fish-eye camera
image from the DARKO robot, showing object stashes and two goal points from our scenarios.

recording continuous activities involving meaningful social navigation towards randomized
targets in the environment. Our new THÖR-MAGNI dataset extends this effort with
rich context annotations, time-synchronized multi-modal data, human-robot interaction
scenarios, and diverse navigation modes of a mobile robot. The THÖR dataset established a
foundation for collecting open-source data on human social navigation toward randomized
targets in a controlled setting using motion capture technology with minimal scripting. In
particular, the THÖR-MAGNI dataset represents a significant advancement, enhancing data
quality and features to provide rich insights into human motion and interactions within a
larger room. The publicly available THÖR datasets, especially THÖR-MAGNI, facilitate
more comprehensive human-robot interaction and human social navigation research.

The THÖR-MAGNI data collection is designed around systematic variation of environ-
mental factors to allow building cue-conditioned models of human motion and verifying
hypotheses on factor impact. To that end, we propose several scenarios in which the
participants, in addition to primary navigation, need to move objects, interact with each
other and the robot, and respond to remote instructions. The dataset includes differential
and omnidirectional robot navigation, semantic zones, environmental direction signs, and
many other aspects. We provide position and head orientation for each moving agent, as
well as 3D lidar scans and gaze tracking. Finally, we provide tools to visualize the dataset’s
multiple modalities and preprocess the trajectory data. In total, THÖR-MAGNI captures
3.5 hours of motion of 40 participants over five days of recording, which is available for
download4. Furthermore, we note the continuity between the THÖR and THÖR-MAGNI
recordings due to their shared environment (in diverse configurations), motion capture

4https://doi.org/10.5281/zenodo.10407223
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Figure 14: Participants in the role of Carrier were transporting various objects in different
sizes and shapes. (1) Carrier–Box carrying a medium-sized card box with two hands. (2)
Carrier–Storage Bin HRI placing the bin at a goal point (3) Stash of small objects transported
by the Carrier–Bucket (4) Large Object (poster stand) moved by two Carrier–Large Object.

system, and complimentary scenario composition.

4.2 Description of the Dataset

The THÖR-MAGNI consists of 52 four-minute recordings (runs) of participants performing
various activities related to navigating alone and in groups, finding and transporting small
and large objects, and interacting with robots. THÖR-MAGNI contains over 3.5 hours of
motion data for 40 participants, including position, velocity, and head orientation. Eye
tracking data is available for 16 of them, totaling 8.3 hours for eight activities (see Table 4).
In 24 runs, THÖR-MAGNI also includes the robot sensor data of 3D point clouds from
an Ouster lidar. Additionally, videos recorded by an Azure Kinect camera and a Basler
fish-eye camera onboard a mobile robot are available on request.

4.2.1 Environment Design

We conducted the data acquisition in a laboratory at Örebro University, the same as in
the THÖR dataset [26]. The room has seven goal positions to drive purposeful human
navigation through the available space, generating frequent interactions in the center. We
include several environmental layouts (i.e., obstacle maps) in the THÖR-MAGNI dataset,
which vary the placement of static obstacles (robotic manipulators and tables) in the room
to prevent walking between goals in a straight path. Apart from static obstacles, two robots
are in the room: a static robotic arm near the podium and an omnidirectional mobile robot
with a robotic arm on top (see Section 4.2.2).

4.2.2 Navigation and Interaction Design

The interaction and navigation design in THÖR-MAGNI extends the weakly-scripted motion
recording procedure introduced in the THÖR dataset [26]. This procedure facilitates
realistic motion in controlled settings, in which accurate ground truth motion capture and
eye tracking data are collected using specialized equipment. Our key idea is to assign
meaningful activities and tasks to the recording’s participants, allowing them to concentrate
on their continuous activity during which they freely move inside the room shared with
other people and robots. To generate a diverse range of interactions, we developed several
scenes that vary in the composition of tasks, robot operation, and other contextual cues.
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Table 4: Amount of eye tracking- and trajectory data recorded for various activities with all
three devices: Tobii 2, Tobii 3, and Pupil Invisible glasses

Activity Eye tracking (min.) Trajectory data (min.)

Visitors–Alone 108 392

Visitors–Group 2 124 344

Visitors–Group 3 52 168

Visitors–Alone HRI 64 112

Carrier–Bucket 32 96

Carrier–Box 60 96

Carrier–Large Object 92 192

Carrier–Storage Bin HRI 16 16

Total 548 1416

Tasks, Activities and Roles Requiring Search and Navigation Aligned with the DARKO
project objectives, we aimed to simulate authentic scenes that reflect the different activities
individuals perform in a workplace environment. To that end, we designed several tasks
that require search, navigation, and interaction with objects, other participants, and a
mobile robot. Participants engaged in those tasks according to their assigned role.

Our dataset has two types of roles: Visitors and Carriers. Visitors navigate either
individually (Visitors–Alone) or in groups of two (Visitors–Group 2) or three (Visitors–Group
3) between target points in the environment. The Visitors role includes a human-robot
interaction component denoted by Visitors–Alone HRI, where participants interact with
a robot in a joint navigation task (see Section 4.2.2). In addition, Carriers are involved
in transporting various objects, including Carrier–Bucket, Carrier–Box, Carrier–Storage
Bin HRI and Carrier–Large Object (see Figure 14). Carriers transport objects between
pre-defined target points, and objects themselves representing different levels of difficulty
for navigation, categorized as small (lowest difficulty), medium (medium difficulty), and
large (highest difficulty).

Modes of Robot Navigation and HRI Our dataset includes the DARKO robot, which
acts as a static obstacle in some scenes and moves in others. This range of behaviors
enables the study of participants’ movements and gaze behaviors concerning the stationary
and mobile status of the robot. In certain scenes, the robot was teleoperated and moved
omnidirectionally, enabling it to reach any 2D position from a stationary position. In
some, it moved directionally with a predetermined orientation (front). In others, the
DARKO robot navigated semi-autonomously with manually set goal points. When acting
semi-autonomously, the robot interacted with participants through a communication
intermediary called the “Anthropomorphic Robot Mock Driver” (ARMoD), a novel concept
designed and implemented in WP5 T5.2 to facilitate natural communication with the
DARKO platform.

4.2.3 Scenario Design

We address the context of agent movement by including both humans and robots, as
previously discussed, in five specifically designed scenes we call “scenarios”. Scenario 1
captures the dynamics of motion because of semantic attributes of the environment and
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Figure 15: Varying environmental layouts for the room configuration of Scenarios 1–3. Right:
Sample scene view for the site used for data acquisition of the THÖR-MAGNI dataset showing
the room configuration for Scenarios 1–3 with the environment layout for Scenario 1B. Left:
Overview of the room configuration and the scenario-specific layout changes. Bottom: Legend
explaining layout elements, including driving styles for the robot in Scenario 3, semantic
elements specific for Scenario 1 (Floor markings, Passage), and position of goals and obstacles.
Upon placement, some objects were subject to a slight rotation between runs, which is accounted
for in the layouts with the rotation tolerance.

sets up a baseline for goal-directed social human navigation. Scenario 2 adds role-specific
motion for some participants navigating the environment. Subsequently, Scenario 3 ex-
plores the impact of different robot motion styles on these role-specific patterns. Figure 15
depicts a detailed overview of the room configuration and varying environmental layouts
for Scenarios 1–3. Scenario 1’s conditions A and B capture regular social behavior in a
static environment with and without additional floor markings and a one-way passage.
Scenario 2 maintains the same layout as Scenario 1A but introduces individuals performing
tasks, emulating industrial activities. Scenario 3 explores human-robot interactions by
varying the driving modes of the mobile robot teleoperated by experimenters on a podium.

Transitioning to a smaller room configuration, we present two scenarios to explore
human motion and intended interactions between humans and robots: Scenarios 4 and
5. In Scenario 4, participants engaged in intermittent interaction with a mobile robot.
This robot communicated in two interaction styles through another entity to mediate joint
navigation with participants toward goal points. In Scenario 5, the robots and a human
co-worker collaborated actively in transporting small storage bins. For a comprehensive
overview of roles and scenarios, see Figure 16.

4.2.4 Post Processing

Multi-modal data synchronization is key to our data collection. We used ROS and custom
Python scripts to align the data streams while maintaining temporal integrity. To achieve
synchronicity between the motion capture and eye tracking data, we strategically placed
custom events associated with precise timestamps in the two data streams using the
respective software of the eye tracking devices such as Tobii Pro Lab and Pupil Player as
well as the Qualisys Track Manager (QTM) for the motion capture system. This procedure
resulted in CSV files where all modalities’ timestamps are synchronized on the motion
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Figure 16: Scenario definitions in the THÖR-MAGNI dataset, including roles, DARKO robot
motion status (e.g., autonomous or teleoperated), environment layout (i.e., obstacle maps),
specific scenario conditions, and duration and recording days. Each recording day has a
unique set of participants. Day 1 has nine participants; days 2-4 have seven participants each.
Three mobile eye-tracking devices were used daily for three participants. On day 5, two devices
were used for two sets of participants. The duration of recorded trajectory and eye-tracking
data is provided in Table 4.

capture system’s timestamp. Within these files, eye tracking data is available for frames
where the motion capture system tracks all rigid body markers, as it is a prerequisite to
determine the 3D gaze vector using a correct head orientation. The frame numbers for
each respective eye tracker’s scene recording are indexed in the column named “SceneFNr”
in the corresponding CSV file.

To facilitate a thorough analysis of the eye tracking data in our study, we offer access
to the raw data from the Tobii glasses, along with essential synchronization details. The
scene recordings are provided in a blurred format to ensure data protection and removed
audio data. Access to the raw data from the Pupil Invisible glasses can be granted upon
individual request, providing careful and ethical distribution of sensitive data.

An extensive post-processing stage followed the data acquisitions, including synchro-
nization and alignment. It aimed to refine and validate the collected data and ensure
the protection of sensitive data. This stage involved several vital procedures, such as
eliminating artifacts and noise caused by marker occlusion, lighting variations, and camera
disruptions. We also rectified misidentified trajectories through spatial and temporal
consistency evaluations, applying manual adjustments when needed.
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4.3 Analysis of the Dataset

We deploy a set of rigorous metrics to assess the dataset’s effectiveness in capturing human
motion dynamics and interactions in various scenarios. Key metrics include tracking
duration, minimum distance between people, and the number of 8-second tracklets. Tracking
duration measures the average continuous tracking time for human agents, with higher
values indicating more extended tracking periods, which are beneficial for long-term
human motion prediction. The minimum distance between people measures the closest
proximity observed between individuals, providing insight into social interactions and
personal space dynamics. The number of 8-second tracklets provides a standardized
measure for comparing tracklet continuity across different datasets.

The THÖR-MAGNI dataset, compared to existing human motion datasets such as
ETH/UCY and THÖR, displays an advance in capturing extended and varied interactions.
In particular, the participants in THÖR-MAGNI have more complex and non-linear motion,
longer tracking duration, closer interactions and more variety in their velocities. Further
evaluation details are presented in [9].

4.4 Conclusion

THÖR-MAGNI dataset compliments and extends the THÖR efforts, initiated as part of
the previous ILIAD project. Both datasets have already proven to be instrumental in
formulating and validating hypotheses about human motion and human-robot in the
DARKO project, as evidently follows from the deliverables D5.1 and D5.2. THÖR-MAGNI
provides valuable ground truth data on the important motion cues of the environment
and individual humans, which enabled us to design and evaluate several novel methods
for human motion modeling and prediction, presented in the next sections.
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5 Long-term human motion prediction using Maps of Dynamics

Summary: In this section, we propose to exploit maps of dynamics (MoDs), a class of
general representations of place-dependent spatial motion patterns, learned from prior
observations) for long-term human motion prediction (LHMP). We present a new MoD-
informed human motion prediction approach, named CLiFF-LHMP, which is data efficient,
explainable, and insensitive to errors from an upstream tracking system. Our approach
uses CLiFF-map, a specific MoD trained with human motion data recorded in the same
environment. We bias a constant velocity prediction with samples from the CLiFF-map
to generate multi-modal trajectory predictions. In two public datasets we show that this
algorithm outperforms the state of the art for predictions over very extended periods
of time, achieving 45% more accurate prediction performance at 50s compared to the
baseline.

5.1 Introduction

In this section we consider methods for predicting human motion in an extended time
frame, i.e. reaching beyond the typical 3−5 s prediction horizon used by robots for collision
avoidance. Such predictions are useful to associate observed tracklets in sparse camera
networks, or inform the robot of the long-term environment dynamics on the path to
its goal [34, 35], for instance when following a group of people [36]. Very long-term
predictions are useful for global motion planning to produce socially-aware unobtrusive
trajectories, and for coordinating connected multi-robot systems with sparse perception
fields.

Human motion is complex and may be influenced by several hard-to-model factors,
including social rules and norms, personal preferences, and subtle cues in the environment
that are not represented in geometric maps. Accordingly, accurate motion prediction is
very challenging [11]. Prediction on the very long-term scale (i.e., over 20 s into the
future) is particularly hard as complex, large-scale environments influence human motion
in a way that cannot be summarized and contained in the current state of the moving
person or the observed interactions but rather have to be modelled explicitly [37].

To predict very long-term human motion, we exploit maps of dynamics (MoDs) that
encode human dynamics as a feature of the environment. Specifically, we use Circular
Linear Flow Field map (CLiFF-map) [38], which captures multimodal statistical information
about human flow patterns in a continuous probabilistic representation over velocities.
The motion patterns represented in a CLiFF-map implicitly avoid collisions with static
obstacles and follow the topological structure of the environment, e.g., capturing the
dynamic flow through a hall into a corridor (see Fig. 17). Our CLiFF-LHMP approach
predicts stochastic trajectories by sampling from a CLiFF-map to guide a velocity filtering
model [1]. Examples of prediction results are shown in Fig. 17.

In qualitative and quantitative experiments we demonstrate our CLiFF-LHMP approach
is 45% more accurate than the baseline at 50 s, with average displacement error (ADE)
below 5 m up to 50 s. In contrast to prior art in long-term environment-aware motion
prediction [37], our method does not make any assumptions on the optimality of human
motion and instead generalizes the features of human-space interactions from the learned
MoD. Furthermore, our method does not require a list of goals in the environment as
input, in contrast to prior planning-based prediction methods. Finally, our method can
flexibly estimate the variable time end-points of human motion, predicting both short-
and long-term trajectories, in contrast to the prior art which always predicts up to a fixed
prediction horizon.
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Figure 17: Long-term (50 s) motion prediction result obtained with CLiFF-LHMP for one person
in the ATC dataset. Red line: ground truth trajectory. Green line: observed trajectory. Blue
lines: predicted trajectories. The CLiFF-map is shown with colored arrows.
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Figure 18: Steps of sampling a direction θs from the CLiFF-map. (a) CLiFF-map built from
the ATC data. The location to sample from is marked with an orange arrow. (b) Selection of
SWGMMs in the CLiFF-map: The red circle contains all SWGMMs within rs distance to the
sampling location. From these SWGMMs, the SWGMM with the highest motion ratio is selected
(marked with a blue circle). (c) The SWGMM distribution in the selected location wrapped on
a unit cylinder. The speed is represented by the position along the ρ axis and the direction is
θ . The probability is represented by the distance from the surface of the cylinder. A velocity
vector (marked with a red arrow) is sampled from this SWGMM. (d) The direction value θs of
the sampled velocity is shown in the sampled direction and marked with an orange circle.

5.2 Method

In this section, we first describe the CLiFF-map representation for site-specific motion
patterns and then present the CLiFF-LHMP approach for single-agent long-term motion
prediction exploiting the information accumulated in a CLiFF-map.

Circular-Linear Flow Field Map (CLiFF-map): To predict human trajectories we exploit
the information about local flow patterns represented in a CLiFF-map as a multimodal,
continuous distribution over velocities. CLiFF-map [38] is a probabilistic framework for
mapping velocity observations (independently of their underlying physical processes), i.e.,
essentially a generalization of a vector field into a Gaussian mixture field.

Each location in the map is associated with a Gaussian mixture model (GMM). A CLiFF-
map represents motion patterns based on local observations and estimates the likelihood
of motion at a given query location.

CLiFF-maps represent speed and direction jointly as velocity V = [θ ,ρ]T using direction
θ and speed ρ, where ρ ∈ R+, θ ∈ [0,2π).

As the direction θ is a circular variable and the speed is linear, a mixture of semi-
wrapped normal distributions (SWNDs) is used in CLiFF-map. At a given location, the
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Algorithm 1: CLiFF-LHMP
Input: H , x t0

, yt0
,Ξ

Output: T
1 T = {}
2 ρobs,θobs← getObservedVelocity(H )
3 st0

= (x t0
, yt0

,ρobs,θobs)
4 for t = t0 + 1, ..., t0 + Tp do
5 x t , yt ← getNewPosition(st1

)
6 θs ← sampleDirectionFromCLiFFmap(x t , yt ,Ξ)
7 (ρt , θt)← predictVelocity(θs, ρt1

, θt1
)

8 st ← (x t , yt ,ρt ,θt)
9 T ← T ∪ st

10 return T

semi-wrapped probability density function (PDF) over velocities can be visualized as
a function on a cylinder. Direction values θ are wrapped on the unit circle and the
speed ρ runs along the length of the cylinder. An SWND N SW

Σ,µ is formally defined as
N SW
Σ,µ (V) =
∑

k∈ZNΣ,µ([θ ,ρ]T +2π[k, 0]T ), where Σ,µ denote the covariance matrix and
mean value of the directional velocity (θ ,ρ)T , and k is a winding number. Although k ∈ Z,
the PDF can be approximated adequately by taking k ∈ {−1,0,1} for practical purposes.
To preserve the multi-modal characteristic of the flow, a semi-wrapped Gaussian mixture
model (SWGMM) is used, which is a PDF represented as a weighted sum of J SWNDs:
p(V|ξ) =
∑J

j=1π jN SW
Σ j ,µ j
(V), where ξ = {ξ j = (µ j ,Σ j ,π j)| j ∈ Z+} denotes a finite set of

components of the SWGMM, and π j denotes the mixing factor and satisfies 0≤ π j ≤ 1.

Human Motion Prediction Using CLiFF-map: We frame the task of predicting a person’s
future trajectory as inferring a sequence of future states. The algorithm is presented
in Alg. 1. With the input of an observation history of Op past states of a person and a
CLiFF-map Ξ, the algorithm predicts Tp future states. The length of the observation history
is Os ∈ R+ s, equivalent to Op > 0 observation time steps. With the current time-step
denoted as the integer t0 ≥ 0, the sequence of observed states is H = 〈st0−1, ..., st0−Op

〉,
where st is the state of a person at time-step t. A state is represented by 2D Cartesian
coordinates (x , y), speed ρ and direction θ : s = (x , y,ρ,θ ).

From the observed sequenceH , we derive the observed speed ρobs and direction θobs
at time-step t0 (line 2 of Alg. 1). Then the current state becomes st0

= (x t0
, yt0

,ρobs,θobs)
(line 3 of Alg. 1). The values of ρobs and θobs are calculated as a weighted sum of the finite
differences in the observed states, as in the Atlas benchmark (Sec. 3.3) [1]. With the same
parameters as in [1], the sequence of observed velocities is weighted with a zero-mean
Gaussian kernel with σ = 1.5 to put more weight on more recent observations, such that
ρobs =
∑Op

t=1 vt0−t g(t) and θobs =
∑Op

t=1 θt0−t g(t), where g(t) = (σ
p

2πe
1
2 (

t
σ )

2
)−1.

Given the current state st0
, we estimate a sequence of future states. Similar to past

states, future states are predicted within a time horizon Ts ∈ R+ s. Ts is equivalent
to Tp > 0 prediction time steps, assuming a constant time interval ∆t between two
predictions. Thus, the prediction horizon is Ts = Tp∆t. The predicted sequence is then
denoted as T = 〈st0+1, st0+2, ..., st0+Tp

〉.
To estimate T , for each prediction time step, we sample a direction from the CLiFF-map

at the current position (x t , yt) to bias the prediction with the learned motion patterns
represented by the CLiFF-map. The main steps for each iteration are shown in lines 5–9 of
Alg. 1.
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Algorithm 2: sampleDirectionFromCLiFFmap(x , y,Ξ)
Input: x , y , Ξ
Output: θs

1 Ξnear← getNearSWGMMs(x , y,Ξ)
2 ξ← selectSWGMM(Ξnear)
3 θs ← sampleDirectionFromSWGMM(ξ)
4 return θs

For each iteration, we first compute the predicted position (x t , yt) at time step t from
the state at the previous time step (line 5 of Alg. 1):

x t = x t−1 +ρt−1 cosθt−1∆t,

yt = yt−1 +ρt−1 sinθt−1∆t,
(1)

Afterwards, we estimate the new speed and direction using constant velocity prediction
biased by the CLiFF-map. The bias impacts only the estimated direction of motion, speed
is assumed to be unchanging.

To estimate direction at time t, we sample a direction from the CLiFF-map at location
(x t , yt) in the function sampleDirectionFromCLiFFmap() (line 6 of Alg. 1). Alg. 2
outlines its implementation. The inputs of Alg. 2 are: the sample location (x , y) and the
CLiFF-map Ξ of the environment. The sampling process is illustrated in Fig. 18. To sample
a direction at location (x , y), from Ξ, we first get the SWGMMs Ξnear whose distances to
(x , y) are less than the sampling radius rs (line 1 of Alg. 2). In a CLiFF-map, each SWGMM
is associated with a motion ratio. To sample from the location with the highest intensity
of human motions, in line 2, from Ξnear, we select the SWGMM ξ with highest motion
ratio. In line 3 of Alg. 2, from ξ, an SWND is sampled from the selected SWGMM, based
on the mixing factor π. A velocity is drawn randomly from the sampled SWND. Finally,
the direction of the sampled velocity is returned and used for motion prediction.

With the direction sampled from the CLiFF-map, we predict the velocity (ρt , θt) in line
7 of Alg. 1 assuming that a person tends to continue walking with the same speed as in
the last time step, ρt = ρt−1, and bias the direction of motion with the sampled direction
θs as:

θt = θt−1 + (θs − θt−1) · K(θs − θt−1), (2)

where K(·) is a kernel function that defines the degree of impact of the CLiFF-map. We
use a Gaussian kernel with a parameter β that represents the kernel width:

K(x) = e−β∥x∥
2

. (3)

In the end of each iteration, we add st to the predicted trajectory T (line 9 of Alg. 1)
and update t for the next iteration. After iterating for Tp times, the output is a sequence
T of future states that represents the predicted trajectory.

5.3 Experiments

Accurate map-aware long-term motion predictions are typically addressed with Markov
Decision Process (MDP) based methods [39, 40, 41, 42, 37]. Among them, as the baseline
for CLiFF-LHMP, we chose the recent IS-MDP approach [37], developed by the consortium
members in the previous ILIAD project. We also compare our method with the constant
velocity predictor [13, 1]. We evaluate the predictive performance of our method using
the ATC [24] and THÖR [26] datasets.
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Dataset Horizon ADE / FDE (m)
CLiFF-LHMP IS-MDP CVM

ATC 50 s 4.6 / 9.6 8.4 / 21.3 12.4 / 27.1
THÖR1 12 s 1.5 / 2.6 1.6 / 3.5 1.8 / 3.8
THÖR3 12 s 1.3 / 2.6 1.5 / 3.6 2.8 / 6.1

Table 5: Long-term prediction horizon results on different datasets. With Os = 3.2 s, error
reported are ADE/FDE in meters.
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Figure 19: ADE/FDE (mean ± one std. dev.) in the ATC dataset with prediction horizon
1–50 s.

Quantitative Results: We show that our approach is substantially better than IS-MDP
when the prediction horizon is above 20 s since it implicitly exploits location-specific
motion patterns, thus overcoming a known limitation of MDP-based methods [37]. At
50 s in the ATC dataset, our method achieves a 45% ADE and 55% FDE improvement in
performance compared to IS-MDP. At 12 s in THÖR1 and THÖR3, our method achieves an
improvement of 6.3% and 13.3% ADE (25.7%, 27.8% FDE) over IS-MDP, respectively.

Further evaluation details are available in [3, 2], in Table 5 and Figures 19–20.

Qualitative Results: Fig. 21, 22 show qualitative results with example predictions. Our
approach correctly captures the motion patterns in each scenario, utilizing the environment
information during the prediction. Fig. 22 shows that the predicted trajectories avoid
the obstacles, even though an obstacle map is not used for predictions. Furthermore,
using maps of dynamics built from the observations of human motion makes it possible
to predict motion through regions which appear as obstacles in an occupancy map, for
example across stairs and through narrow passages (see Fig. 21). Similarly, using the
MoD input keeps predictions in more intensively used areas of the environment, avoiding
semantically-insignificant and empty regions, e.g., corners of the room (see Fig. 22).

Real world demonstrations of the CLiFF-LHMP approach on the DARKO robot are also
shown in Fig. 38.

5.4 Extensions of the MoD-LHMP methods

5.4.1 Time-conditioned MoD-LHMP

Human flows in real environments exhibit distinct patterns in different times of the day.
In the general CLiFF-LHMP method, one CLiFF-map is used for all predicted trajectories,
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Figure 20: ADE/FDE (mean ± one std. dev.) in the THÖR1 (top) and THÖR3 (bottom)
dataset with prediction horizon 0.4–12 s.

no matter what time the trajectory happens. However, motion patterns of human can vary
over time. In this work, we present time-conditioned CLiFF-maps to represent motion
patterns in different time in a day.

One day is divided into n time intervals. For each fixed time interval, one CLiFF-map is
trained using the trajectories appear over that time interval. For one day, time-conditioned
CLiFF-map consists of n CLiFF-maps are generated corresponding to n time intervals.
Fig. 23 shows the CLiFF-map of 10:00, 14:00 and 18:00 in the first day of ATC dataset.
From CLiFF-maps in Fig. 23, the change of human motion pattern over a day can be
visualized clearly. To visualize how human motion patterns vary by hour in a day, as an
example, Fig. 24 shows the CLiFF-map in one location of east corridor in ATC environment.
With time-conditioned CLiFF-map, human motion can be represented more accurately
compared with general CLiFF-map, which is trained on data over the whole day.

To predict human movement, the current time of a person, t0, decides which time
interval the future trajectory appears at. The corresponding time-conditioned CLiFF-map is
then used for prediction. After choosing the corresponding CLiFF-map in time-conditioned
CLiFF-maps, the rest of the process is same as with CLiFF-LHMP. The proposed method
improves performance in presence of timed events, such as the morning and evening
rushes, lunch hours, etc.

5.4.2 Class-conditioned MoD-LHMP

DARKO robot is expected to operate in real complex environments, shared with diverse
agents which may be involved in dedicated activities, have heterogeneous motion patterns
or belong to different classes (e.g. walking humans, delivery vehicles, other types of robots,
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Figure 21: Predictions in ATC with Ts = 50 s. Red line shows the ground truth trajectory.
Green line shows the observed trajectory and blue lines show the predicted trajectories. Note
that we correctly predict trajectories crossing obstacles such as stairs (top of the map) and
exits (left of the map).
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Figure 22: Predictions in THÖR1 (top) and THÖR3 (bottom) with Ts = 12 s. Red line shows
the ground truth trajectory. Green line shows the observed trajectory and blue lines show the
predicted future trajectories

28



H2020-ICT-2020-2: 101017274 DARKO Deliverable D5.1

Or
ie

nt
at

io
n 

[d
eg

]

0

90

180

270

360

Or
ie

nt
at

io
n 

[d
eg

]

0

90

180

270

360

Or
ie

nt
at

io
n 

[d
eg

]

0

90

180

270

360

Or
ie

nt
at

io
n 

[d
eg

]

0

90

180

270

360

Figure 23: Time-conditioned CLiFF-map for 10:00 (left), 14:00 (middle) and 18:00 (right).
Colored arrow shows the mean value of the component with maximum weight in CLiFF-map.
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Figure 24: CLiFF-maps at one example location of east corridor. For each hour between 9:00
to 21:00, time-conditioned CLiFF-map of the example location is shown, together with general
CLiFF-map of the whole day at the same location. The colored arrow shows the mean value of
each component in the Semi-Wrapped Gaussian Mixture model (SWGMM), which represents
speed and orientation jointly with a multimodal distribution. The weight of each component is
shown and the colored arrow gets more transparent as the weight of the component is larger.

etc). Class- or activity-conditioned motion prediction is thus an appealing way to reduce
forecast uncertainty and get more accurate predictions for heterogeneous agents. However,
this is hardly explored in the prior art, especially for mobile robots and in limited data
applications.

In CLiFF-LHMP, a single CLiFF-map is used for all predicted trajectories, irrespective
of the agent class. However, their motion patterns often differ, as detailed in Fig. 25.
In DARKO, we analyse different class-conditioned trajectory prediction methods on two
datasets. We propose a set of conditional pattern-based and efficient deep learning-based
baselines, and evaluate their performance on robotics and outdoors datasets (THÖR-
MAGNI with diverse activities in difference roles and Stanford Drone Dataset with diverse
agent classes).

Our experiments show that all methods improve accuracy in most of the settings
when considering class labels, as shown in qualitative trajectory prediction comparisons in
Fig. 26. More importantly, we observe that there are significant differences when learning
from imbalanced datasets, or in new environments where sufficient data is not available.
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Figure 25: CLiFF-maps at example locations in SDD [robicquet16]. Both general and class-
conditioned CLiFF-maps of Bicyclist and Pedestrian of three locations are shown on the right.
General CLiFF maps may depict combinations of multiple classes (point 1) or median speed
and orientation (points 2 and 3).
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Figure 26: Prediction examples of Bicyclist (left), Pedestrian (middle) and Car (right) in SDD
with 4.8 s prediction horizon.

In particular, we find that deep learning methods perform better on balanced datasets,
but in applications with limited data, e.g., cold start of a robot in a new environment, or
imbalanced classes, pattern-based methods may be preferable.

5.4.3 LaCE-LHMP

Detecting and identifying abnormal trajectories is a major challenge in motion modelling
and prediction. Existing methods typically identify abnormal motions by comparing them
to expected behaviors [43] or measuring deviations from normal motions [44]. However,
these approaches require labelled data for supervised learning.

The modelling approach based on the CLiFF map may struggle to differentiate dominant
human flow from irregular motion, and therefore the prediction accuracy may be affected
by anomalous data.

To address the limitations of prior work, we propose the Laminar Component Enhanced
LHMP approach (LaCE-LHMP). Our approach is inspired by data-driven airflow modelling,
which estimates laminar and turbulent flow components and uses predominantly the
laminar components to make flow predictions. Based on the hypothesis that human
trajectory patterns also manifest laminar flow (that represents predictable motion) and
turbulent flow components (that reflect more unpredictable and arbitrary motion), LaCE-
LHMP extracts the laminar patterns in human dynamics and uses them for human motion
prediction.

As shown in Table 6 and Fig. 28, LaCE-LHMP performs on par with CLiFF-LHMP in the
short-term perspective, and outperforms it by 6.0% ADE and 6.4% FDE.

To evaluate the relation between prediction performance and the degree of laminar
dominance in the environment, we present a heatmap of FDE values of our approach
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Figure 27: Example of laminar component extraction in LaCE-LHMP. Upper-left: LaCE model
of a location in a shopping mall. Colored arrows show flow directions with highest likelihoods;
Upper-right: raw data (velocity observations) in the ω−ν domain (i.e. speed and orientation)
at a specific location; Lower-left: histogram of the raw data Γ R; Lower-right: extracted laminar
component Γ L . The laminar component is used for motion prediction in LaCE-LHMP.

Method ADE / FDE
Top-k

ADE / FDE

CVM 4.26 / 9.01 -
Trajectron++ 6.09 / 12.86 2.96 / 5.86
CLiFF-LHMP 3.52±0.009 / 7.40±0.021 3.00 / 6.09
LaCE-LHMP (Ours) 3.31±0.006 / 6.93±0.013 3.00 / 6.13

Table 6: Long-term prediction (20 s) results on the ATC dataset. With Os = 3s, errors are
reported as ADE/FDE in meters.

for prediction horizon 20 s in Fig. 29. In laminar-dominated regions, predictions made
using the LaCE model are more accurate than in regions with more turbulent patterns,
indicating that the former are more predictable.
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Figure 28: ADE/FDE (top) and top-k ADE/FDE (bottom) in the ATC dataset with a prediction
horizon 1–20 s. Predictions with the LaCE model are more accurate during the whole considered
period, as indicated by lower ADE/FDE values, which signify improved performance.
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Figure 29: Left: KL divergence between Γ R and Γ L . Right: A heatmap illustrating the FDE
values of LaCE-LHMP in the ATC dataset, with a prediction horizon of 20 s. Predictions exhibit
higher accuracy in the central region. Predictions exhibit higher accuracy in the central region,
which is predominantly laminar, as indicated by lower KL divergence.
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6 Unified 3D Human Pose Dynamics and Trajectory Prediction

Summary: Human 3D body pose is a strong descriptor of walking dynamics and intention.
It gives the robot a finer representation of space occupied by the person in comparison to
a geometric point on the top-down 2D map with a standard collision avoidance radius.
In this section, we introduce a unified approach to forecast the dynamics of human
keypoints and the motion trajectory from a short input sequence of poses, developed as
a joint effort with WP2 T2.5. We utilize the 3D human pose estimation input from WP2
followed by a graph attention network to encode the skeleton structure. We propose a
novel motion transformation technique to predict full-body 3D joint positions directly
in a global coordinate frame. The backbone of our prediction architecture is a compact
non-autoregressive Transformer, capable of accurate and real-time pose and trajectory
prediction. In an extensive evaluation, including public and novel datasets with specific
focus on activities that are relevant for mobile robot navigation, we show our approach to
be faster and more accurate in pose and trajectory prediction compared to the prior art.

6.1 Introduction

Refining trajectory predictions with full-body poses gives complete information about
human behaviour with many promising applications in human-robot interaction [45, 46],
automated driving [47], surveillance [48] and healthcare [49].

Historically speaking, the research in trajectory prediction and full-body pose prediction,
with a few notable exceptions [50, 45, 51], progressed independently and targeted distinct
application scenarios. There are, however, benefits of solving the task in a unified manner:
considering the gait, head orientation and other full-body pose features can refine the
dynamics modeling in trajectory prediction [52, 11], but also the full-body poses can be
predicted more accurately when rooted in global coordinates with respect to the walking
surface [45]. Furthermore, full-body pose prediction in trajectory coordinates can improve
robot response in approach and handover applications, and better plan the collision
avoidance maneuvers in close proximity to the robot [53].

Prior art addressed the problem of pose and trajectory prediction as two separate tasks
[54, 55] or solved it in a decoupled manner with separate modules [56, 45]. Furthermore,
only a handful of works specifically focused on navigation activities, which are of critically
interest for predictive planning of the DARKO robot, considered over the more diverse
actions without distinct locomotion. This challenge is also reflected in the prior art
datasets of full-body motion, which are often dominated by static activities such as bending,
reaching, handing over, standing up, etc.

In this section we present a novel Unified human Pose and Trajectory predictor (“UP-
Tor”). We propose to encode the skeleton features using a graph attention network and use
a non-autoregressive Transformer model [55, 45] with pose input sequence in global 3D
coordinates. To support this form of input, we propose a coordinate transformation tech-
nique applied to the training sequences and during inference. We evaluate our method on
the H3.6M [57] and CMU-Mocap [58] datasets, and contribute a novel DARKO dataset of
17 subjects performing diverse navigation-related activities. In qualitative and quantitative
experiments we show that our method is more accurate in full-body pose and trajectory
prediction of walking people, while being faster and more compact than prior art.
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Figure 30: UPTor: Unified 3D Human Pose Dynamics and Trajectory Prediction Transformer

6.2 Methodology

6.2.1 Problem Formulation

Let P (t) ∈ R3N denote the 3D human pose at time t comprising N joints: P (t) =
{ j1(t), j2(t), . . . , jN (t)} where each ji(t) ∈ R3 represents the (x , y, z) coordinates of the
ith joint in the global coordinate frame at time t. We define an input sequence as a set
of poses from time 1 to time T1: Sin = {P (1),P (2), . . . ,P (T1) ∈ RT1×3N . The objective
of the model is to predict sequence of poses from T1 + 1 to T1 + T2 in global coordinate
frame: Sout = {P (T1 + 1), . . . ,P (T1 + T2)} ∈ RT2×3N . The complete motion sequence S
is given by S = Sin ∪Sout.

6.2.2 Model Architecture

Motion Transformation: We address the challenge of training motion sequences from
global coordinate frame with varying initial positions and motion orientations. To that
end, we propose a systematic method to normalize the motion sequences and achieve
global and orientation invariance, as summarized in Fig. 31.

Global invariance: To ensure that our predictions commence from consistent coordi-
nates, we translate the entire motion sequence using the translation vector v, derived as
the negative counterpart of the root joint position at the last pose of the input sequence
jroot(T1) i.e., v = − jroot(T1). We add this translation vector to every pose in the sequence
to translate the entire sequence towards origin. The resulting translated poses are formally
defined as:

P ′(t) =P (t) + v ∀t ∈ [1, T1 + T2] (4)

Through this translation, the last human pose of our input sequence is anchored to the
origin with its root joint at (0,0,0) thus providing a uniform initiation for subsequent
motion predictions.

Orientation invariance: To align various motion directions along with the positive x-axis,
the rotation angle, θ is computed in radians between the input motion direction and the
positive x-axis. This angle is calculated as the arctangent of the ratio of the differences in
the y and x coordinates of the root joint’s position at the last input pose T1 and the pose
at (T1 −δ), with δ being a predetermined interval to measure motion direction at the end
of the input horizon.
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θ = arctan2(∆y,∆x)

�

∆x = jroot(T1)x − jroot(T1 −δ)x
∆y = jroot(T1)y − jroot(T1 −δ)y

(5)

Finally, to rotate the entire sequence, we take the dot product of the rotation matrix
around the z-axis, Rz with all translated poses, P ′(t), resulting in a motion transformed
sequence S ′′. The rotated poses of S ′′ are formally defined as:

P ′′(t) =





cos(−θ ) − sin(−θ ) 0
sin(−θ ) cos(−θ ) 0

0 0 1



 · P ′(t) ∀t ∈ [1, T1 + T2] (6)

Figure 31: Left: Top-down view of 4 color-
coded motion sequences, with corresponding
sequences after motion transformation encir-
cled. Faded colors mark the motion start.
Right: Transformation of a single sequence.
Original motion is represented by a green
trajectory and skeleton, accompanied by cal-
culations of the angle between the motion
direction and the positive x-axis, as well as
the translation vector at T1.

Spatial Graph Embedding: We utilize
a Graph Attention Network (GAT) [59] to
generate graph embedding for each pose
P ′′(t) in the input sequence. To that end,
we represent the human pose as a graph,
where each joint corresponds to a node and
bones to the edges. Input to the spatial
graph attention module is a reshaped se-
quence, S ′′in ∈ R

T1×N×3. Each joint node
ji(t) ∈ R3 has 3 spatial features in our
graph representation. Edges, E are deter-
mined based on the kinematic chain of the
body skeleton, these can vary depending
on the dataset.

The GAT layer produces a new set of
node features X ∈ RT1×N×Jdim as its out-
put, yielding the joint embedding. Subse-
quently, joint embedding from the same
pose are flattened to create the pose em-
bedding, which has a dimension of X ∈

RT1×(N×Jdim). Thus, the dimensionality D of the transformer model is given by N × Jdim.
The GAT here is employed to facilitate intra-frame attention mechanisms among joints,
effectively capturing the spatial relationships. The output from the GAT, which represents
spatial embedding, is subsequently fed into a transformer module. The transformer is de-
signed to learn temporal relations across frames, ensuring a comprehensive understanding
of both spatial and temporal dynamics of human motion.

Spatial-Temporal Positioning: We incorporate dual layers of positional encoding to
capture human dynamics in detail, building on the formulation from [60]. First we generate
a sinusoidal spatial positional encoding to establish differentiation amongst various joints
within each pose. For every joint, this method produces a positional encoding of dimension
Jdim, accounting for all N joints. Subsequently, to differentiate between poses over time, we
generate a temporal encoding. Temporal encodings have dimension Jdim × N , accounting
for all T1 poses, elucidating the sequential dynamics from one frame to the next.

Transformer Encoder Decoder: The basic structure of the Transformer layers are
adopted from [60] with a non-autoregressive decoder inspired by POTR [55]. The trans-
former takes the spatio-temporally positioned input poses and processes it through a
number of Nx encoder and decoder layers. Each layer of encoder and decoder shown
in Figure 30 incorporates a Temporal Self-Attention component adopted from [61] that
emphasize the relative distances between tokens in a sequence. In this technique, for
each pose, attention scores are weighted more heavily towards its immediate neighboring
poses. This is particularly beneficial for human pose sequences, where not only the order of
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positions are crucial, but the relative transition between frames is also extremely important.
In addition, to ensure that the human pose at current step is dependent only on prior
poses and not on any future poses, we employ casual masking to Temporal Self-Attention
components.

The output from encoder block projects the encoded sequence into a latent space
Z = [z1, z2, . . . , zT ]. The decoder utilizes this latent space to produce the output pose
sequence. Decoder queries are initialised with X (T1) which is the encoder’s last input
pose repeated over target length times.

After the decoding phase, a Multi-Headed Shared-Attention Mechanism is employed,
wherein the query from the output of the decoder attends to the output of the Graph
Attention Network, X . Subsequently, these output embedding are propagated through
linear layers and then transformed back to their original motion orientation and global
coordinate space using v⃗ and θ giving rise to the forecasted 3D poses, Sout.

Given that each pose data has a dimensionality of 3N , with a predicted pose se-
quence ŷT1+1, ŷT1+2, . . . , ŷT1+T2

and a ground truth pose sequence yT1+1, yT1+2, . . . , yT1+T2
,

our model was trained using a combined pose and trajectory loss function L:

L =
1

3N(T2 − T1 − 1)

T1+T2
∑

t=T1+1

∥ ŷt − yt∥2 +
1

3N(T2 − T1)

T1+T2−1
∑

t=T1+1

∥( ŷt+1 − ŷt)− (yt+1 − yt)∥2

6.3 Experiments

6.3.1 Setup

Datasets: We evaluate our approach on the common public datasets, Human3.6M [57]
and CMU-Mocap [58], and on our own novel DARKO dataset. We categorize the motion
sequences from those datasets into two broad action categories: navigational motion, such
as walking, running or greeting, and static activities without distinct locomotion, such as
discussing, smoking, or eating. The details of the Human3.6M and CMU-Mocap dataset
processing are available in [10]. The DARKO walking humans dataset includes diverse
locomotion modes (walking, pacing, running, turning), captured over a span of 3 hours
from 17 participants, separated into 508 motion sequences, summing up to 35k frames
across all actors.

We use Average and Final Displacement Errors (ADE and FDE), measured on the
root joint (e.g. ADETr) and the pose joints (e.g. ADEPo) in meters. ADE is the mean
square error between predicted and ground truth joint coordinate, calculated over the
entire output sequence, whereas FDE measures displacement in the last time step. When
calculating ADEPo and FDEPo to isolate pose prediction accuracy, we subtract the root joint
to remove global translation. Furthermore, we report Runtime (R) in milliseconds to
illustrate duration of a single forward pass.

6.3.2 Results

Human3.6M [57]: Table 7 presents a quantitative comparison of our method, UPTor,
against four established baselines [45, 54, 51]. The baseline values are taken from [45],
and we make sure to strictly follow their evaluation setup.

Experimental results in Table 7 demonstrate the competitive performance of our
approach, UPTor, against the state of the art in pose prediction (Dlow and DMMGAN).
DLow is not designed to predict trajectories and cannot handle global translation, whereas
DMMGAN is not a feasible model for real-time prediction and has restricted use for robotic
applications due to the large model size and higher runtime. The major part of the H3.6M
evaluation set is comprised of static actions such as sitting, smoking, eating, or discussing.
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Method ADE/FDEPo
(m)↓

ADE/FDETr
(m)↓

R
(msec) ↓

DLow [54] 0.48 / 0.62 0.19 / 0.45 20
DMMGAN [51] 0.44 / 0.52 0.12 / 0.23 100
HipOnly [51] - 0.15 / 0.30 18
STPOTR [45] 0.50 / 0.75 0.13 / 0.27 25
UPTor 0.55 / 0.76 0.12 / 0.25 -

Table 7: Evaluation on Human3.6M across 15 distinct actions, including both navigational
and static activities.

Method Params ↓ R (msec) ↓

STPOTR [45] 43,276,992 73
UPTor 23,165,184 61

Table 8: Runtime and size comparison on H3.6M

Method
DARKO Dataset CMU-Mocap

ADE/FDEPo(m)↓ ADE/FDETr(m)↓ ADE/FDEPo(m)↓ ADE/FDETr(m)↓

STPOTR
[45]

0.47 / 0.65 0.17 / 0.34 0.58 / 0.86 0.09 / 0.18

UPTor 0.39 / 0.55 0.13 / 0.26 0.45 / 0.71 0.07 / 0.14

Table 9: Error metrics comparison on DARKO data & locomotion actions subset of CMU-Mocap

Original Translate Rotate Trans + Rot

UPTor model variant ADEPo
(m)
↓

ADETr
(m)
↓

ADEPo
(m)
↓

ADETr
(m)
↓

ADEPo
(m)
↓

ADETr
(m)
↓

ADEPo
(m)
↓

ADETr
(m)
↓

w/o Transformation 0.46 0.13 1.12 5.51 1.08 2.47 1.24 6.40
with Transformation 0.39 0.13 0.39 0.13 0.39 0.13 0.39 0.13

Table 10: Evaluation on DARKO data under diverse spatial transformations and motion
orientations.

Given that these actions are heavily influenced by individual behavioral patterns, the
superior performance of these two models is due to their generative nature, which allows
them to forecast a wide range of potential future poses/trajectories, and the error metrics
are computed on the closest generated sample. Our UPTor surpasses the HipOnly method
which is the trajectory prediction module from DMMGAN.

UPTor also excels in trajectory prediction across all 15 actions of the H3.6M dataset
surpassing STPOTR in terms of ADETr and FDETr. STPOTR uses a distinct module and
loss function for pose prediction, targeting on minor variations in pose dynamics, thereby
improving its pose prediction accuracy. Instead, we utilize a unified architecture and loss
function for parallel training and prediction of both pose and trajectory, thus trajectories
are predicted with high precision as they account for a significant portion of training
error. Moreover, our model uses pose dynamics as an added context for effective trajectory
learning.
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The modular approach of STPOTR comes at a computational cost, as highlighted by the
runtime comparison presented in Table 8. For an assessment of computational efficiency
and model complexity, we conducted run-time tests with our model and STPOTR on a
laptop equipped with an 11th Gen Intel® CoreTM i7-11850H CPU and an NVIDIA RTX
A3000 GPU. In Table 8, “Params" refers to the number of transformer parameters, shedding
light on model size and complexity, while run-time represents the duration for a single
forward pass with batch size of 1. Empirical results demonstrate our model’s capability to
infer human pose dynamics and trajectory patterns with a 50% reduction in model size
and enhanced run-time performance. These results align with our objective for achieving
accurate trajectory prediction with better computational efficiency compared to baseline
models for mobile robotic applications. Similarly, quantitative results in Table 9 indicate
superior performance of our model in predicting both pose and trajectory for navigational
actions from the CMU-Mocap dataset.

Finally, Fig. 32 illustrates exemplary predicted poses along with the trajectory displace-
ment.
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Figure 32: Example predictions in all datasets. Predicted poses are shown with red skeletons,
while the green ones depict the ground truth, followed by the top-down view of the entire
trajectory in global space. For H3.6M and DARKO, motion is predicted for 2 sec and for 1 sec
for CMU-Mocap.
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7 Human Gaze and Head Rotation during Navigation, Exploration
and Object Manipulation

Summary: The human gaze is an important cue to signal intention, attention, distraction,
and the regions of interest in the immediate surroundings. Gaze tracking can transform
how robots perceive, understand, and react to people, enabling new modes of robot
control, interaction, and collaboration. In this section, we use gaze tracking data from
THÖR-MAGNI to investigate the coordination between gaze direction and head rotation of
humans engaged in various indoor activities involving navigation, interaction with objects,
and collaboration with a mobile robot. In particular, we study the spread and central bias
of fixations in diverse activities and examine the correlation between gaze direction and
head rotation. We introduce various human motion metrics to enhance the understanding
of gaze behavior in dynamic interactions. Finally, we apply semantic object labeling to
decompose the gaze distribution into activity-relevant regions. This work is accepted to
the RO-MAN 2024 conference [7].

7.1 Introduction

Gaze has been described as a window into the human mind. It provides information
related to human attention and intention. Integrating gaze tracking into Human-Robot
Interaction (HRI) approaches can help robots better understand human behavior and, in
turn, help robots navigate shared spaces more effectively and participate in collaborative
tasks with greater awareness and adaptability.

Studies of human gaze during navigation and dynamic human-robot interactions are
still scarce, not least due to the complexity of tracking the gaze of a moving person. Thus,
head orientation is often used as a proxy for gaze direction and using head orientation has
been shown to improve the interaction between humans and robots [62]. Furthermore,
head orientation is successfully used in automated driving settings to infer the attention
and intention of pedestrians and cyclists [63]. However, relying solely on head orientation
as an indicator of gaze has limitations due to the complex nature of human attention,
which often involves subtle eye movements not captured by head orientation alone [64],
(see Figure 33).

In the course of the DARKO project, we analyze the gaze patterns of people moving and
interacting in a dynamic environment shared with robots. We utilize the THÖR-MAGNI
dataset, unique for its synchronized data on head orientation, eye movement patterns,
and walking trajectories across a diverse group of individuals [9]. In particular, we show
the potential and limitations of using head orientation as a proxy for gaze and the complex
relationship between head movements and gaze direction.

Our study employs various analytical approaches to examine and describe human gaze
patterns. Firstly, we focus on the distribution of visual fixations on the 2D tracker plane to
evaluate the uncertainty caused by eye rotation relative to head orientation. We extend
the analysis of fixations by examining participants’ activities and the specific micro-actions
they performed during tasks and interactions. We use heatmaps to visualize fixations and
identify patterns of visual engagement and attention allocation.

To offer a geometric representation of where participants fixated most frequently on
these heatmaps in the 2D tracker plane, we apply ellipse-fitting techniques to summarize
and analyze areas of highest fixation density, referred to as “central tendencies”. Addi-
tionally, the levels of engagement are quantified by calculating the average duration and
rate of fixations. This allows for a deeper understanding of how participants interacted
with their environment and the robots within it. Through this analysis, we aim to provide
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Figure 33: A participant of the THÖR-MAGNI dataset attends to instructions of the mobile
robot [65]. Top: Illustration of the visual difference between the head orientation (red) and
gaze direction (green). Bottom: a sequence of gazes on the mobile robot, followed by a shift
of attention to the goal point that the robot cued. This shift is followed by a head rotation to
center the visual field on the goal point. Fixations are shown with white circles, and their
sequences are connected by red lines.

more effective support for gaze-informed predictions in dynamic settings and highlight the
nuanced ways human attention is directed and sustained during human-robot interaction.

Furthermore, we investigate the coordination between eye and head movements
during attention shifts. We compare our findings in the indoor settings with prior studies
in outdoor environments. We correlate head orientation and gaze vectors with motion
metrics to link visual attention with physical movement. With this analysis, we seek to
support the deployment of appearance-based gaze estimation methods, which struggle
with head and eye coordination variability [66], especially in dynamic environments.

Lastly, we leverage the YOLO object detection model to qualify the objects human gaze
at more precisely. By identifying and categorizing objects or areas that attract significant
visual focus, we gain insights into the semantics of targets of participants’ gaze, enriching
our understanding of attention allocation in dynamic settings, especially during locomotion.
Applying modern computer vision techniques to eye-tracking data is a promising approach
to contextually interpreting human attention within the context of HRI.
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Table 11: Amount of eye-tracking data available from the Tobii glasses for various activities in
the THÖR-MAGNI dataset.

Activity Recorded minutes Scenario

Visitors-Alone 108 All
Visitors-Group 2 124 All
Visitors-Group 3 52 All
Carrier-Bucket 32 2–3
Carrier-Box 60 2–3
Carrier-Large Object 92 2–3

Total 468

7.2 Analysis of Gaze Patterns in Navigation and Interaction Tasks

We develop and describe a methodology to analyze human gaze in dynamic environments.
We study and compare gaze behavior across various activities and tasks, which include
search and navigation towards goals in the room, manipulation of objects, social inter-
actions and receiving instructions from the robot. We have two goals in mind: first, to
provide tools and methods to support human activity understanding and prediction from
mobile gaze trackers, and second, to quantify human gaze in relation to head orientation
in scenarios where systems may need to rely on the head orientation as a proxy for head
direction.

In this section we present the analysis of gaze distribution and its bias in Sec. 7.2.1,
7.2.2 and 7.2.3. In Sec. 7.2.4, we introduce head orientation into the analysis and discuss
the head- and eye-rotation comfort ranges. In Sec. 7.2.5, we discuss auxiliary motion
metrics, and, in Sec. 7.2.6, examine the distribution of gazes towards static and dynamic
semantic objects in the environment.

7.2.1 Overall Gaze Distribution

First, we study gaze points where participants focused their attention, known as fixations
[67]. An example of fixation sequences obtained with eye-tracking glasses is shown in
Figure 33 (bottom). We visualize the accumulation of fixations using heatmaps, also
called “attention maps”. These heatmaps, generated from the THÖR-MAGNI dataset’s eye-
tracking data, illuminate how participants distribute visual attention within environments
shared with robots and other humans.

Figure 34 displays the heatmap created for the entire gaze fixations. We identify
a preference for gaze points along the vertical center of the visual field, accompanied
by a stronger variation in vertical fixation positions compared to horizontal ones. The
participants’ focus in our study is slightly shifted to the right of the vertical center line.
Additionally, there was a general trend of participants directing their gaze more toward
the upper portion of the images.

Using heatmaps, we can also quantify these shifts of the gaze distribution. To that
end, we use an ellipse fitting technique [68], which leverages the covariance matrix,
eigenvalues, and chi-squared distributions to accurately delineate areas of concentrated
gaze. This method, also visualized in Figure 34, encapsulates areas representing 25%,
50%, 80%, and 90% of all collected fixations, providing a quantitative measure of where
participants’ gazes converge most frequently. Our findings reveal that ellipses covering
28% and 39% of the image area encapsulate 80% and 90% of all fixations, respectively,
underscoring participants’ central focus in the visual field.
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Figure 34: Fixation locations in the THÖR-MAGNI dataset. Ellipses represent areas containing
25%, 50%, 80%, and 90% (Black Labels) of all recorded gazes. Blue Labels indicate the
percentage of the 1920x1080 image included in each ellipse.

7.2.2 Gaze Distribution Across Activities and Micro-Actions

We examine how gaze distribution varies across participant activities and micro-actions
to understand the intricacies of the human gaze in motion and around robots within the
THÖR-MAGNI dataset’s dynamic settings. We analyze activities such as navigating to goal
points and manipulating objects. For consistency reasons, our analysis focuses on the initial
three scenarios involving the roles of “Visitors” and “Carriers”. Therefore, we do not include
Scenarios 4 and 5, with a stronger focus on HRI, as there is already a study concerning
the human gaze in these scenarios [65], which is part of WP5 T5.2 and deliverable D5.2.
Figure 35 illustrates the spatial distribution of fixations, revealing nuanced visual attention
patterns across roles and micro-actions, supported by Tables 12 and 13 contain numerical
values describing the center of mass and spread of the central fixation tendencies. “Carrier-
Box” and “Carrier-Bucket” participants exhibit concentrated gazes toward the center during
object transportation, indicating focused attention necessary for this task. In contrast, the
“Carrier-Large Object” group shows a more dispersed gaze pattern, particularly favoring
the upper hemisphere. This dispersion likely reflects the need for broader environmental
awareness in localizing the object and maneuvering oversized items, partially occluding
their visual field. “Visitors-Group 2” and “Visitors-Alone” display varied gaze distributions,
highlighting the impact of group size and task complexity. Notably, “Visitors-Group 3”
participants prefer the lower hemisphere, possibly indicating a different visual engagement
strategy due to group dynamics or task demands.

7.2.3 Quantifying Gaze Distribution: Central Bias and Spread

This study examines the distribution of visual fixations during various participant activities,
including micro-actions such as “Walk between goals” or “Draw Card” and tasks involving
object manipulation. The findings are presented in Tables 12 and 13 as tuples indicating
the 2D coordinates of the fixations’ center of mass relative to the image’s central point
(illustrated by the crossing of the dotted lines in Figure 35). Following the methods
described in subsection 7.2.1, we fit ellipses to encompass 80% of the fixation distributions.
We list the percentages that detail the proportion of the 2D eye-tracking plane these
occupy alongside the coordinates in the tables. This analysis sheds light on visual attention
patterns across different tasks, marking the shifts in focus with precise distances from the
image’s center. For the “Carrier-Box” and “Carrier-Bucket” groups, the analysis revealed
that the central displacements of their fixation hotspots were generally close to the image’s
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Figure 35: Heatmaps of fixation locations in the dataset with average Fixation duration (FD)
and overall Fixation rate (FR) per role and the comprised micro-actions. Visual axes are
shown with dotted lines. Central coordinates and the spread of the central biases are listed in
Tables 12 and 13.

Table 12: Central shift of gaze distribution in activities and micro-actions from Figure 35 (top).
In each cell, the tuple indicates the 2D coordinates of the distribution center of mass with
respect to the center of the frame (rounded to the nearest 5 pixels). The percentage indicates
the area of the ellipse (that encompasses 80% of the fixations) with respect to the area of the
frame.

Activity Walk between goals Object Manipulation Walk with the Object General

Carrier-Box (-20, 0), 18.6% (-40, -240), 10.6% (-100, 50), 15.9% (0, 20), 27.3%
Carrier-Bucket (0, 150), 28.5% (60, -260), 14.8% (-80, 30), 18.2% (-10, -40), 19.1%

Walk between goals Wait for instructions Walk with the Object General
Carrier-Large Object (0, 75), 19% (-35, 150), 22.7% (50, 50), 21.2% (0, 125), 25%

Table 13: Central shift of gaze distribution in activities and micro-actions from Figure 35
(bottom). In each cell, the tuple indicates the 2D coordinates of the distribution center of
mass with respect to the center of the frame (rounded to the nearest 5 pixels). The percentage
indicates the area of the ellipse (that encompasses 80% of the fixations) with respect to the
area of the frame.

Activity Walk between goals Draw Card General

Visitors-Group 2 (100, 50), 22.8% (-30, -270), 14.7% (10, 250), 24.9%
Visitors-Group 3 (80, -80), 22.7% (80, -420), 8.5% (80, -100), 17%
Visitors-Alone (80, -100), 15.4% (30, -250), 34.1% (50, 50), 24.2%

center, indicating a concentrated area of visual attention during most activities, except
during “Object Manipulation,” where the focal areas significantly diverged from the center.
This pattern suggests that tasks requiring detailed object interaction prompt broader visual
engagement, as evidenced by the larger displacement values. Conversely, the “Carrier-
Large Object” group’s fixations were predominantly in the image’s upper hemisphere,
indicating a consistent focus area across their activities.

During the analysis of the visitors’ activities, we observe discernible patterns in the
distribution of visual attention across different micro-actions. Specifically, during the
“Draw Card” tasks, there was a noticeable shift of focus toward the lower hemisphere of
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(a) Gaze eccentricity: During motion peaks with
eye and head rotations in the same direction,
binned in 10-degree intervals. Overall Head Con-
tribution to these shifts is shown on the other
axis.

(b) Goal actions: Visitors and Carriers-Large Ob-
ject drawing a card or waiting for instructions
for new goal points.

(c) Walking actions: Visitors and Carriers-Large
Object.

(d) Object manipulation and walking: Carrier-
Bucket and Carrier-Box, walking actions include
with and without object.

Figure 36: Showing how much the head direction contributes to the total gaze direction,
depending on the eccentricity of the gaze angle with respect to the body orientation. This
figure applies to movements where the head and eyes move horizontally in the same direction.

the image, indicating a heightened level of visual engagement unique to this activity. This
gaze concentration is distinct from the more varied attention patterns associated with
other tasks, indicating that specific actions can significantly influence where and how
visual attention is assigned. In tasks other than “Draw Card,” the “Visitors-Alone” and
“Visitors-Group 2” categories exhibited behaviors consistent with active visual exploration
and navigation within the space. Conversely, “Visitors-Group 3” primarily focused their
gaze on the center of the image, indicating a desire to facilitate communication and
coordination within the group. These observations highlight the dynamic and task-specific
nature of visual attention among the “Visitors”, emphasizing how the context and demands
of different activities subtly shape the collective and individual focus within groups.

7.2.4 Quantifying Eye-Head Coordination in Gaze Shifts

To better understand eye-head coordination, we analyze instances where participants’
eyes and heads rotated horizontally in unison. We focus on horizontal rotations because
observers preferentially spread their gaze horizontally to explore their surroundings, and
horizontal gaze movements are more common than vertical ones when walking over flat
terrain [69].

Our systematic categorization of eye and head movement coordination across various
activities revealed distinct patterns in horizontal gaze shifts. For minor attention shifts,
contributions from both eyes and head were nearly equal, especially during locomotion
(see Figure 36c). For larger attention shifts, the relative contribution of the head decreases,
reaching a minimum of around 45 degrees. This is slightly higher than the 35 degrees
observed by Stahl et al. [70] for eye movements in seated free viewing tasks. However,
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Table 14: Walking Speed, Acceleration, and Straightness Index (SI) for the roles in Scenarios
1–3 of the THÖR-MAGNI dataset

Role Speed [m/s] Acceleration [m/s²] SI

Visitors-Alone 0.88± 0.55 0.28± 0.37 0.6
Visitors-Group 2 0.81± 0.5 0.24± 0.31 0.69
Visitors-Group 3 0.80± 0.5 0.24± 0.36 0.77
Carrier-Box 1.07± 0.47 0.25± 0.38 0.95
Carrier-Bucket 1.16± 0.4 0.27± 0.41 0.97
Carrier-Large Object 0.65± 0.51 0.22± 0.27 0.75

head movements were more dominant across all gaze shifts and micro-actions in groups of
three visitors (see Figures 36a and 36b). Beyond the 40-50 degree range, head movement
contributions increased variably across different activities, with Visitors-Alone and those
in Visitors-Group 3 adjusting their gaze more rapidly than those carrying objects. Eye
movements dominated between 20 and 50 degrees, while more significant shifts above
70 degrees significantly increased head contributions. This pattern aligns with outdoor
environment findings [69] but with a more pronounced reliance on eye movements in
indoor settings. An exception to these trends is the micro-actions of Carrier-Box and Bucket
during object manipulation, which strongly preferred head contributions to gaze shifts
(see Figure 36d).

7.2.5 Correlating Motion with Gaze Alignment

To explore how human motion dynamics impact eye-head coordination, we propose several
metrics of human motion, namely the straightness of participants’ trajectories, walking
speed, and acceleration. The straightness index (SI) ranges from 0 (non-linear) to 1
(perfectly straight), with higher values indicating more linear trajectories and lower values
indicating more explorative trajectories. Mean walking speeds and accelerations are
presented with standard deviations to highlight inter-individual variability. To calculate
these motion metrics, we follow the preprocessing methods outlined by de Almeida et al.
[5]. Results are outlined in Table 14.

Our analysis extends to correlating (Spearman correlation) these motion metrics with
the alignment between head orientation and gaze vector, offering novel insights into
human navigation strategies. We discovered a subtle yet statistically significant negative
correlation between head and eye rotation alignment with walking speed (ρ = −0.04,
p < 0.01), suggesting that increased linear velocity tends to enhance the synchronization
of eye and head movements. A weaker yet also significant negative correlation with linear
acceleration (ρ = −0.01, p < 0.01) indicates a less pronounced impact on the alignment
of eyes and head compared to velocity.

The motion metrics in Table 14 vary across participant activities and reveal distinct
movement patterns. “Carriers”, characterized by high-velocity, linear movements and
minimal head movement contribution to gaze shifts and centralized gazes, contrast with
“Visitors-Alone,” who exhibit more dynamic movements with less linear trajectories and
more explorative gaze distributions. “Visitors-Group 2” and “Visitors-Group 3” show similar
speeds and accelerations to “Visitors-Alone” but follow straighter paths and demonstrate
different gaze and head movement dynamics. “Visitors-Group 3” mainly displays a more
considerable head contribution to gaze shifts.

Moving in pairs, the “Carrier-Large Object” participants displayed the slowest walking
speeds and accelerations, a wide range of velocities, and the highest fixation rates, under-
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Figure 37: Distribution of fixations on objects by participants in Scenarios 2, 3A, and 3B (left)
and 1A and 1B (right).

lining a unique interaction pattern. Their contribution of head movement to gaze shifts
notably stayed below 50% for most activities despite their interactions with objects like
the other carriers (see Figure 36), emphasizing the role’s distinct coordination patterns.
These findings emphasize the intricate relationship between physical motion and gaze
behavior, contributing valuable perspectives to developing intuitive and responsive robot
interactions in shared spaces.

7.2.6 Quantifying Attention with Object Detection

The static and dynamic objects heavily influence the human gaze in the environment. We
employed an object detection method for the video frames from the eye-tracking glasses
to achieve a finer decomposition of attention into classes of semantic objects. We used
YOLOv8 [71], pre-trained on the COCO dataset, and refined with a custom dataset with
labeled objects from THÖR-MAGNI. The classes, listed in Figure 37, include role-dependent
objects (e.g. boxes and buckets), other walking people and the DARKO robot (see also
Figure 33).

Our custom dataset, consisting of 355 images annotated with seven classes, facilitated
a focused analysis of participants’ gaze during motion, particularly near the DARKO robot.
Through this methodology, we observed notable shifts in attention distribution across
different scenarios and activities, as visualized in Figure 37. The pie charts illustrate a
change in attention allocation from the environment and other participants in Scenario
1 to the more diversified attention towards the DARKO robot in subsequent scenarios,
underscoring its significant presence in the shared space.

The statistical analysis, employing t-tests and calculating Cohen’s d-effect sizes, supports
these observations with significant findings. Specifically, the transition from Scenarios 1
and 2 to Scenarios 3A and 3B reveals a marked increase in attention towards DARKO, with
effect sizes of [−1.6,−0.8], all with p < 0.1, respectively, indicating a strong influence of
the robot’s presence on participant attention. This influence is further supported by the
lack of statistically significant differences in attention between the different driving styles
of DARKO in Scenarios 3A and 3B, suggesting that it is the robot’s presence as a static or
dynamic entity rather than its motion pattern that primarily captures human attention.

7.3 Discussion

Our analysis emphasizes the utility of using head orientation as a baseline assumption for
gaze direction, which is particularly advantageous for onboard sensor-based gaze tracking.
While this correlation is crucial for designing natural and seamless HRI systems, more
than head orientation is required. It serves as an excellent standalone measure but must
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be complemented with gaze information to account for more dynamic settings, enabling
refined interaction models that accommodate the complexity of human attention in diverse
activities.

We observed that the contribution of eye gaze to attentional shifts decreases when
objects are being carried or manipulated, indicating a preference for head movements
over eye movements in these scenarios. Eye gaze is centralized during these tasks and
focuses on objects and goal points relevant to the task fulfillment. For actions such as
card drawing and navigating between goal points, where eye gaze plays a more significant
role, understanding central gaze tendencies becomes essential to support gaze estimation
via head orientation. Specifically, during navigation and visual exploration, gazes are
primarily directed toward the upper hemisphere of the mobile eye-tracker (horizon) and
on the lower hemisphere during card drawing or object manipulation.

Moreover, our observations of participants in groups of three show that they divert their
attention from robots to social interactions, displaying a slightly higher head contribution
overall than other roles. This highlights the need for mobile robots to integrate sophisti-
cated detection and anticipation algorithms in crowded areas, particularly around groups.
Such capabilities are vital for navigating social environments, ensuring human safety, and
optimizing robot operational efficiency. Understanding group dynamics provides valuable
insights for designing robots that can navigate human social settings, adjust their behavior
to minimize disruptions and promote coexistence.

Additionally, our research on human-robot interaction has revealed a significant finding
regarding the perception of robots. Specifically, the gaze distribution was similar for robots
driving directionally and omnidirectionally, suggesting that the perception of these two
mobility styles may not differ substantially. This similarity in gaze distribution indicates a
potential versatility in human acceptance of different robotic mobility styles, which opens
up avenues for innovative robot designs without compromising the user experience. The
affirmation of technological advancements in robot locomotion encourages confidence in
their acceptance within human-centered environments.

In conclusion, examining human gaze behavior in HRI contexts enriches our under-
standing of the interplay between human attention, perception, and robot design. These
insights can advance the development of robotic systems that align with human behav-
iors and expectations, improving safety, efficiency, and integration into shared spaces.
The broad applicability of these advancements, from collaborative manufacturing to au-
tonomous vehicles, highlights the importance of gaze analysis in future HRI research and
development.

7.4 Conclusion

We strongly believe that, with the evident progress in mobile eye-tracking, human gaze
will increase its importance in Human-Robot interaction, bi-directional communication,
activity recognition and direct robot control. Along with the head orientation and full-body
pose, as discussed in Section 6, gaze is an important visual cue for the robots to track and
exploit in their operation. In this section we outlined a novel methodology to measure
and generalize human gaze data in navigation and dynamic interaction scenarios.
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Figure 38: CLiFF-LHMP prediction of people at ARENA2036 running live on the DARKO robot
[3].

Figure 39: Context-aware collision avoidance of the DARKO robot, considering (1) full-body
3D human skeleton poses projected as red ellipses, (2) detected activities, and (3) 2D motion
predictions. The mobile robot proactively clears the path of a walking human, while preparing
to bypass a standing person. This method [53] is developed in WP6.

8 Conclusion

In this deliverable, the DARKO consortium has introduced novel methods, datasets, and
experimental results to predict the future motions and intents of the surrounding people.
These results, in combination with the work carried out in T5.2, T5.3 and T5.4 of WP5,
represent major steps forward towards the research goals of DARKO and the final, fully
integrated robot demonstration at the end of the project.

Several novel methods described in this deliverable have been successfully deployed
and demonstrated during the MS3 demonstration milestone and the associated stakeholder
meeting at the KI.FABRIK in Munich in June 2024. Specifically, we have shown the data
efficient long-term trajectory prediction using maps of dynamics, trained from only 5
minutes of human motion data, see Fig. 38. We have also integrated the fast short-term
trajectory prediction into the context-aware Model Predictive Control (MPC) method
for collision avoidance, see Fig. 39. Further practical demonstrations occurred at the
Automatica fair in Munich in June 2023 and the project status day event at ARENA 2036
in September 2023, and have raised great interest among the audiences.

As future steps, we plan to integrate and demonstrate the full-body prediction system,
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described in Sec. 6, on the robot, and achieve tighter integration with the rest of the WP5
components. Towards the final demonstration in 2025, we wish to plan sets of experiments
that demonstrate the benefit of using the proposed architecture in cluttered intralogistic
environments.
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